Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Earth Sci ; 113(2): 245-283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500652

RESUMEN

One of the most remarkable features of the central Northern Calcareous Alps (Eastern Alps, Austria) is the widespread presence of Upper Triassic deep-water carbonates (the Hallstatt facies) and Permo-Triassic evaporites resting on deep-water Middle Jurassic strata and their underlying Upper Triassic shallow-water carbonate platform successions. The Hallstatt facies and accompanying evaporites have been classically interpreted to originate either from a location south of the time-equivalent carbonate platforms, or to have been deposited in deeper water seaways within the broad platform domain. To date, this dispute has been addressed mostly through the analysis of Triassic and Jurassic facies distribution in map view, which, however, is subject to some degree of ambiguity and subjectivity. In this contribution we present, for the first time, sequentially restored regional cross-sections through the central Northern Calcareous Alps to understand the implications of the contrasting paleogeographic models. We present (a) an interpretation based on a highly allochthonous origin of the Triassic deep-water units and (b) an interpretation based on their relative autochthony in which we incorporate the potential influence of salt tectonics in the central NCA. The restored cross-sections provide a framework within which the alternative scenarios and their paleogeographic implications can be better understood. Through this analysis we propose that salt tectonics in the central NCA can provide a valid explanation for apparent inconsistencies in the relative autochthony scenario and thus constitutes a reasonable alternative to the currently accepted allochthony scenario.

2.
Sedimentology ; 69(5): 2099-2130, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36248773

RESUMEN

Whereas deposits of extremely-rapid, 'catastrophic' mass wastings >105 m3 in volume (for example, the Marocche di Dro rock avalanche in the Southern Alps and the Flims rockslide in the Western Alps) are easily recognized by their sheer mass and blocky surface, the identification of fossil catastrophic mass wastings partly removed by erosion must be based on deposit characteristics. Herein, a 'fossil' (pre-last glacial) rock avalanche, previously interpreted as either a till or debris flow, is described. The deposit, informally called 'Rubble Breccia', is located in the intramontane Campo Imperatore halfgraben that is bounded by a master fault with up to ca 900 m topographic throw. Based on documentation from field to thin section, and by comparative analysis with post-glacial rock avalanches, tills and debris flows, the Rubble Breccia is reinterpreted as a rock avalanche. The Rubble Breccia consists of an extremely-poorly sorted, disordered mixture of angular clasts from sand to block size. Many clasts show fitted subclast boundaries in crackle, jigsaw and mosaic fabrics, as diagnostic of catastrophic mass wasting deposits. Intercalated layers of angular to well-rounded clasts of coarse sand to fine pebble size, and deformed into open to recumbent folds, may represent shear belts folded during terminal avalanche propagation. The clast spectrum of the Rubble Breccia - mainly shallow-water bioclastic limestones, Saccocoma wackestones and other deep-water limestones and dolostones - is derived from the front range along the northern margin of the basin. Calcite cement found within the Rubble Breccia was dated with the U/Th disequilibrium method to 124.25 ± 2.76 ka bp, providing an ante-quam age constraint to the rock avalanche event. Because catastrophic mass wasting is a common erosional process, fossil deposits thereof should be more widespread than have been identified to date, although this may be a consequence of misidentification. The criteria outlined here provide a template to identify fossil catastrophic mass wasting deposits of any age.

3.
Anal Bioanal Chem ; 393(2): 623-34, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18998118

RESUMEN

Multilayered samples consisting of Al, Co and Ni nanolayers were produced by MBE and characterized nondestructively by means of SRXRF, mu-XRF, WDXRF, RBS, XRR, and destructively with SIMS. The main aims were to identify the elements, to determine their purity and their sequence, and also to examine the roughness, density, homogeneity and thickness of each layer. Most of these important properties could be determined by XRF methods, e.g., on commercial devices. For the thickness, it was found that all of the results obtained via XRR, RBS, SIMS and various XRF methods (SRXRF, mu-XRF, WDXRF) agreed with each other within the limits of uncertainty, and a constant deviation from the presets used in the MBE production method was observed. Some serious preliminary discrepancies in the results from the XRF methods were examined, but all deviations could be explained by introducing various corrections into the evaluation methods and/or redetermining some fundamental parameters.


Asunto(s)
Aluminio/análisis , Cobalto/análisis , Cobre/análisis , Nanotecnología , Níquel/análisis , Nanoestructuras/análisis , Tamaño de la Partícula , Sensibilidad y Especificidad , Espectrometría por Rayos X , Propiedades de Superficie
4.
J Environ Monit ; 7(5): 419-24, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15877161

RESUMEN

Aerosol particles with aerodynamic diameters between 0.18 and 10 microm were collected in the workroom air of two aluminium smelter potrooms with different production processes (Soderberg and Prebake processes). Size, morphology and chemical composition of more than 2000 individual particles were determined by high resolution scanning electron microscopy and energy-dispersive X-ray microanalysis. Based on chemical composition and morphology, particles were classified into different groups. Particle groups with a relative abundance above 1%(by number) include aluminium oxides, cryolite, aluminium oxides-cryolite mixtures, soot, silicates and sea salt. In both production halls, mixtures of aluminium oxides and cryolite are the dominant particle group. Many particles have fluoride-containing surface coatings or show agglomerations of nanometer-sized fluoride-containing particles on their surface. The phase composition of approximately 100 particles was studied by transmission electron microscopy. According to selected area electron diffraction, sodium beta-alumina (NaAl(11)O(17)) is the dominant aluminium oxide and cryolite (Na(3)AlF(6)) the only sodium aluminium fluoride present. Implications of our findings for assessment of adverse health effects are discussed.


Asunto(s)
Aerosoles/análisis , Contaminación del Aire Interior/análisis , Exposición Profesional , Aluminio , Metalurgia , Tamaño de la Partícula
5.
Anal Chem ; 75(23): 6576-85, 2003 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16465712

RESUMEN

The binding state of palladium was studied within the frame of an investigation on the mechanism of analyte fixation during the pyrolysis step in graphite furnace atomic spectrometry. One approach was the determination of the palladium intercalated in the pyrolytic coating of the graphite tube. Due to the low concentrations of intercalated palladium in the pyrolytic coating, precise determination of the shift of certain X-ray lines was chosen. From several investigated valence state sensitive X-ray transitions, the Pd Lbeta2/15 (L3-N4,5) line shift was the one best determinable. The measured line shifts are in the range of -0.14 to 0.71 eV at line widths of 13 eV (fwhm) and a line energy of 3.1729 keV. These very small line shifts were determined by electron probe microanalysis. The detection of the small line shifts was performed with a new method-by evaluation of the change of the intensity in the flanks of the X-ray line. The measurements yielded the following results: inside the pyrolytic graphite, the palladium is distributed inhomogeneously in the form of clusters or islands and in the form of particles on the surface of the pyrolytic graphite. The differentiation between particles and clusters is a very practical one: as long as a particle can be seen in the SEM we talk of particles. Often, however, Pd is detected in an area on the tube or platform surface without detection of a particle. Hence, it can be assumed that the Pd is present in the form of clusters which might even be intercalated in the uppermost graphite layers. The valence state inside these clusters does not appear to be uniform. It can be interpreted as a mixture of Pd with PdO in the center of the clusters or particles (positive peak shift) and of Pd bound to the graphite (strong negative peak shift). On the basis of these observations, a way is proposed to determine how activated Pd atoms in intercalated Pd domains are forming strong covalent bonds to analytes. These bonds are responsible for the analyte fixation of even very volatile analytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...